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Abstract

Introduction: There is a pressing need for non-invasive, cost-effective tools for early

detection of Alzheimer’s disease (AD).

Methods: Using data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI),

Cox proportionalmodelswere conducted to develop amultimodal hazard score (MHS)

combining age, a polygenic hazard score (PHS), brain atrophy, and memory to predict

conversion frommild cognitive impairment (MCI) to dementia. Power calculations esti-

mated required clinical trial sample sizes after hypothetical enrichment using theMHS.

Cox regression determined predicted age of onset for AD pathology from the PHS.

Results: The MHS predicted conversion from MCI to dementia (hazard ratio for 80th

versus 20th percentile: 27.03). Models suggest that application of the MHS could

reduce clinical trial sample sizes by 67%. The PHS alone predicted age of onset of

amyloid and tau.
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2 REAS ET AL.

Discussion: The MHS may improve early detection of AD for use in memory clinics or

for clinical trial enrichment.

KEYWORDS

Alzheimer’s disease, amyloid, genetics, magnetic resonance imaging, memory, mild cognitive
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HIGHLIGHTS

∙ A multimodal hazard score (MHS) combined age, genetics, brain atrophy, and

memory.

∙ TheMHS predicted time to conversion frommild cognitive impairment to dementia.

∙ MHS reduced hypothetical Alzheimer’s disease (AD) clinical trial sample sizes by

67%.

∙ A polygenic hazard score predicted age of onset of AD neuropathology.

1 BACKGROUND

Alzheimer’s disease (AD) is an age-dependent neurodegenerative dis-

ease hallmarked by the accumulation of extracellular amyloid beta

(Aβ) plaques and intracellular neurofibrillary tau tangles that emerge

decades before symptom onset.1 This preclinical period is followed by

a prodromal stage during which a diagnosis of amnestic mild cognitive

impairment (MCI) indicates high probability of conversion to dementia

within several years.2 Because AD has a complex, multifactorial eti-

ology with genetic and modifiable risk factors, diagnostic accuracy in

preclinical periods is limited, which poses a particular challenge for

clinical trial enrollment in which pre-screening precision is critical to

minimize cost and subject burden. Thus, there is an outstanding need

to develop tools that can identify individuals with a high probability

of converting to AD for timely diagnosis and streamlined clinical trial

screening.

Cerebrospinal fluid (CSF) or positron emission tomography (PET)

measures of amyloid and tau pose obstacles to routine clinical use due

to their cost, invasiveness, and radiation exposure. Inexpensive, non-

invasive, and widely available approaches to quantify personalized AD

risk will improve clinicians’ ability to select patients with the greatest

potential for therapeutic benefit, and to guide clinical trial enrichment

to minimize trial cost and patient burden. To this end, accurate longi-

tudinal prediction of disease progression in preclinical or prodromal

stages, during which therapeutic interventions will be most effective,3

is urgently needed.

Late-onset AD has high genetic susceptibility, with apolipoprotein E

(APOE) ε4 conferring the strongest risk of any single gene.4 Genome-

wide association studies have identified a diversity of additional AD

risk variants beyond APOE,5 which have been combined into polygenic

risk scores (PRS) that estimate an individual’s lifetime genetic risk.

However, PRS models do not provide critical information about age

of dementia onset, are limited in prognostic utility, and carry mixed

accuracy at predicting amyloid and tau.6 Using age-dependent survival

analysis,wepreviously integrated commongenetic variants into apoly-

genic hazard score (PHS) that accurately estimates age of AD onset,

even among APOE ε3/ε3 individuals, who constitute the majority of

AD cases.7,8 The Desikan AD PHS predicts CSF, PET, or post mortem

measures of neuropathological burden, rates of cognitive decline, and

conversion to AD,9–11 andmay be useful for clinical trial enrichment.12

Considering the time-sensitive nature of AD interventions, AD risk

models using polygenic estimates such as the Desikan AD PHS will be

of greatest clinical utility if they can precisely track the clinical time

course.

Because of the multi-etiological pathways that synergistically con-

tribute to AD13–15 and variable disease manifestations, multimodal

tools for AD detection16 and prognosis17 are superior to single-

modality methods. Thus, the sensitivity of genetic risk estimates may

be maximized by integrating complementary markers of disease pro-

gression, such as neurodegeneration and memory decline, which are

more proximal to clinical progression than amyloid or tau.18–20 Our

group developed a composite ADatrophy score that distinguishes indi-

viduals with MCI who convert to AD or demonstrate clinical decline

from those who remain stable.21 The ease of acquiring neuropsycho-

logical measures enhances their practical value in clinical and research

settings.Whereas both AD atrophy scores and global cognition predict

conversion from MCI to AD, combining the PHS with either measure

improves prediction,10 suggesting that their integration may optimize

prediction of AD progression.

Here, we evaluate the prognostic utility of the Desikan AD PHS

in prodromal AD by integrating it with brain atrophy and cognitive

scores into a multimodal hazard score (MHS) to optimize precision of

predicting time to conversion from MCI to dementia. By leveraging

relatively cost-effective and non-invasive genetic, imaging, and cog-

nitive biomarkers, multivariate predictive models such as the MHS

could streamline clinical trial screening by reducing the number of par-

ticipants required to undergo costly and burdensome pre-screening

PET scans. The MHS may also be useful in memory clinics to target
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REAS ET AL. 3

individuals with highest risk of progressing to AD and potential

for therapeutic benefits, while minimizing concern among those

experiencingmemory complaints with a low risk of developing AD.

2 METHODS

2.1 Participants

Data were included from participants of the Alzheimer’s Disease

Neuroimaging Initiative (ADNI; adni.loni.usc.edu), a multicenter lon-

gitudinal observational study established in 2004 to validate clinical,

imaging, genetic, and biospecimen barkers for prediction of progres-

sion to AD.22 The present study analyzed data from 849 ADNI partici-

pants with a diagnosis of MCI or subjective memory complaints (SMC)

at baseline and available genetic, magnetic resonance imaging (MRI),

and cognitive data. Follow-up assessments were conducted annually

for up to 36 months. ADNI study procedures were approved by local

institutional review boards, and all participants or their guardians

provided written informed consent prior to participation.

2.2 Genotyping

Genotyping was conducted according to standard assays by Illu-

mina and raw genetic data were downloaded from the ADNI web-

site (https://adni.loni.usc.edu/). The Desikan AD PHS was computed

based on a Cox proportional hazard regression model combining

31 AD-associated single nucleotide polymorphisms (SNPs) with two

APOE variants (ε2/ε4), trained with genetic data from an independent

cohort.7

2.3 Magnetic resonance imaging

Details of image acquisition and analysis have been described

previously.21 Briefly, structural MRI data were acquired following

strict standardization protocols, and raw baseline Digital Imaging

and Communications in Medicine MRI data were downloaded from

the ADNI website (http://adni.loni.usc.edu/data-samples/mri/). Corti-

cal thickness and subcortical volumes were measured from baseline

structural T1 data using FreeSurfer v5.023 to calculate quantitative

morphometric measures from regions of interest (ROIs) for survival

analysis. Automated volumetric segmentation and cortical surface

reconstruction underwent quality review by trained technicians as

described24 and data with significant artifacts were excluded from

analysis. A previously validated brain atrophy score was computed

as the sum of weighted measures from ROIs averaged across hemi-

spheres, derived using linear discrimination analysis to distinguish AD

patients fromhealthy controls.21 Componentmeasures of this atrophy

score included volume of the hippocampus, and thickness of entorhinal

cortex, middle temporal gyrus, bank of the superior temporal sulcus,

isthmus cingulate (retrosplenial cortex), superior temporal gyrus, and

medial and lateral orbitofrontal gyri.

RESEARCH INCONTEXT

1. Systematic Review: The authors conducted a systematic

review of peer-reviewed literature on methods to pre-

dict conversion to Alzheimer’s disease (AD) dementia.

Existing research supported multimodal approaches but

largely relied on use of invasive and/or costly biomark-

ers and, when including genetic measures, were largely

restricted to apolipoprotein E genotype.

2. Interpretation: The AD multimodal hazard score (MHS)

presented here improves upon prior prediction mod-

els by integrating polygenic, brain atrophy, and memory

scores, which can be readily acquired in clinical settings

using non-invasive and cost-effective tools, to predict

age of dementia onset. The MHS may facilitate early

disease detection to identify individuals at the highest

risk for conversion to dementia and development of AD

neuropathology.

3. Future Directions: The MHS can be incorporated into

clinical settings for the diagnosis of preclinical AD and for

clinical trial enrichment.MHSprediction accuracymay be

optimized by inclusion of more sensitive biomarkers as

they become clinically available.

2.4 Cognitive assessment

Memory performance was assessed at baseline using the learning

(sum of trials 1–5) measure of the Rey Auditory Verbal Learning Test

(RAVLT), a test of verbal episodic memory.25

2.5 Measurement of Aβ and tau

Lumbar puncture was conducted as detailed in the ADNI manual

(http://www.adni-info.org/). Aβ 1-42 (Aβ42) and phosphorylated tau

(p-tau) were measured from CSF samples using the Elecsys β-amyloid

(1-42) CSF, and the Elecsys phosphotau (181P) CSF immunoassays at

the Biomarker Research Laboratory, University of Pennsylvania, USA,

as previously described.26 Cutoffs for amyloid and tau positivity were

Aβ42 < 977 pg/mL and p-tau > 24 pg/mL, as deemed optimal for

performance against visual PET read.26

2.6 Statistical approach

2.6.1 Development of the MHS

The MHS was calculated to estimate age-specific risk of conversion

from MCI to AD, based upon the combined contributions of genetics,

brain morphometry, and memory performance. The Desikan AD PHS
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4 REAS ET AL.

was used as an estimate of polygenic risk andRAVLT learning scorewas

used as a measure of episodic memory. To quantify AD-specific atro-

phy patterns, 64 ROI volumetric measures21 were combined into the

imaging hazard score (IHS) by applying Cox regression to a training set

of cross-sectional ADNI data. Age-specific proportional hazard scores

were computed by applying time-invariant Cox proportional hazards

regression with PHS, IHS, and RAVLT scores as predictors, using the

exponential baseline hazard function of Brookmeyer et al.27 Thus, the

PHS, IHS, and RAVLT measures served as intermediaries to an aggre-

gate risk estimate of conversion to AD, integrating complementary

markers of genetic susceptibility, regional brain atrophy, and memory

impairment.

2.6.2 Predicting conversion from MCI to AD using
the MHS

All 849 participants with diagnoses of MCI or SMC at baseline were

included for MHS model development, and time to first diagnosis to

AD dementia was used at the outcome. The composite MHS model

included predictors of age, the PHS, IHS, and RAVLT score. Model

performance at predicting conversion from SMC or MCI to AD over

a 5-year period was assessed using age alone; age and the PHS; age

with the PHS and IHS; and the aggregate MHS (age with PHS, IHS,

and RAVLT) by testing on hold-out longitudinal data from the ADNI

sample. All participants without an AD diagnosis at baseline were

included for analysis. The outcome of interest was a diagnosis of AD

5 years after baseline. To evaluate model performance according to

risk stratification, hazard scores were ranked according to population

percentile. Low- and high-risk groups were identified as the lowest

(20%) or highest (80%) of the population distribution. Hazard ratios

(HRs) were computed between the lowest and highest risk groups

(20% vs. 80%; HR80/20) for conversion fromMCI to AD over the 5-year

follow-up, with higher HRs indicative of better model performance.

To compare survival curves across risk groups and to obtain expected

ages of onset from absolute hazards, we combined Cox proportional

hazard scores with the exponential baseline hazard.28

2.6.3 Optimizing clinical trial enrichment with the
MHS

To assess the utility of the MHS for improving clinical trial enrichment

strategies, power calculations were conducted to estimate sample

sizes required for a hypothetical longitudinal clinical trial study. As the

hypothetical trial outcome, models used annual percent rate (APR) of

change on the Clinical Dementia Rating Scale–Sum of Boxes (CDR-SB),

a measure of disease progression commonly used in AD clinical tri-

als, computed per subject using linear regression across time points.

To first assess the sensitivity of the MHS to longitudinal disease pro-

gression, Pearson correlations were computed between each set of

predictors in the MHS and CDR-SB change. Next, for each predictive

model, participants were classified as high or low risk using a 50th per-

centile cutoff, and the high-risk group was selected as the hypothetical

trial enrichment group. Applying methods described by Fitzmaurice

et al.,29 for each predictive model the necessary sample size to detect

CDR-SB change, with β = 0.80 and α = 0.05, was computed using the

full sample (both low- and high-risk groups) and within the high-risk

subgroup. The difference in required sample size after enrichmentwith

the MHS risk prescreening versus no enrichment was calculated as (N

MHS high risk /N low+high risk).

2.6.4 Prediction of AD pathology

Using a partially overlapping dataset including 401 ADNI subjects

(238 cognitively normal, 28 SMC, 109 MCI, 25 dementia, 1 unknown)

with available CSF Aβ42 and p-tau data, Cox regression models were

implemented to predict age of onset of CSF markers of AD pathol-

ogy acquired from longitudinal ADNI data. Participants were followed

for up to 8 years, with an average of 1.2 ± 0.6 CSF measurements.

Models used the Desikan AD PHS to determine age-dependent prob-

abilities of reaching threshold levels of Aβ42 and p-tau.26 From the

resulting model, we identified predicted age of onset for amyloid- and

p-tau–positivity according to PHS risk stratification.

3 RESULTS

3.1 Participant characteristics

Participant demographics and baseline diagnoses and cognitive data

for the sample used in computation of the MHS are presented in

Table 1. Subjects were diagnosed at baseline with either early or late

MCI or SMC. Over the course of the 5-year follow-up, 35% of subjects

converted to AD dementia, including 1% (N= 1) of SMC, 13% (N= 36)

of earlyMCI, and 54% (N= 260) of lateMCI.

3.2 MHS predicts conversion from MCI to AD

Prediction accuracy for conversion from MCI to AD dementia over

the 5-year follow-up period was computed for each combination of

the four model components (age, PHS, IHS, and RAVLT; Figure S1 in

supporting information). Survival curves for models of interest are

shown in Figure 1 with groups stratified by population risk from the

1st percentile to 99th risk percentile. Histograms of bootstrapped

odds ratios80/20 for each model are presented in Figure S2 in support-

ing information with 95% confidence intervals showing acceptable

accuracy. There was a modestly increased likelihood of conversion to

AD dementia with older age, with a HR80/20 = 1.42 (95% confidence

interval= 1.12, 1.97; Figure S1). Adding PHS to themodel significantly

improved prediction (Figure 1A), evidenced by a greater separation of

AD risk across PHS percentiles, with an HR80/20 = 3.57 (2.63, 4.03).

Model performance improved with addition of the IHS (Figure 1B),

withHR80/20 =13.16 (8.93, 20.43). Finally, incorporating RAVLT scores

into the MHS further improved model performance (Figure 1C), with

HR80/20=27.03 (17.46, 48.96), reflectedby lowconversion rates (10%)
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REAS ET AL. 5

TABLE 1 Baseline characteristics for all participants (N= 849) used in computation of theMHS.

Characteristic

SMC

N= 90

EarlyMCI

N= 276

LateMCI

N= 483

All subjects

N= 849

Age (mean, SD) 72.3 (5.8) 71.5 (7.3) 74.0 (7.5) 73.0 (7.4)

WomenN (%) 55 (61.1%) 121 (43.8%) 182 (37.7%) 358 (42.2%)

MMSE score (mean, SD) 29.0 (1.2) 28.3 (1.6) 27.3 (1.8) 27.8 (1.8)

RAVLT score (scaled; mean, SD) 33.4 (37.1) 55.5 (34.2) 81.7 (29.5) 68.0 (36.2)

APOE ε4 carrierN (%) 30 (33.3%) 116 (42.0%) 259 (53.6%) 405 (47.7%)

Abbreviations: APOE, apolipoprotein E; MCI, mild cognitive impairment; MHS, multimodal hazard score; MMSE,Mini-Mental State Examination; RAVLT, Rey

Auditory Verbal Learning Test; SD, standard deviation; SMC, subjectivememory complaints.

F IGURE 1 Multimodal prediction of conversion fromMCI to AD dementia by PHS, brain atrophy, andmemory. Survival curves illustrate
predicted probability of remaining free of AD dementia according to stratification by PHSmodels. Curves are shown for models using (A)
Age+ PHS, (B) Age+ PHS+ IHS, and (C)MHS (Age+ PHS+ IHS+RAVLT). AD, Alzheimer’s disease; IHS, imaging hazard score;MCI, mild cognitive
impairment; MHS, multimodal hazard score; PHS, polygenic hazard score; RAVLT, Rey Auditory Verbal Learning Test.

among those with a 20th percentile MHS risk in contrast to the high

conversion rates (77%) among those in the 80th percentile risk group.

The expected time to AD dementia onset significantly decreases with

higher MHS; for example, as illustrated in Figure 1C, the time differ-

ence frombaseline to a given probability of conversion toADdementia

can be≥5 years between the 80th and 20th percentileMHS groups.

3.3 Clinical trial enrichment with the MHS

To evaluate correspondence between predictive multivariate models

and longitudinal disease progression, correlations were computed

between each predictive model score and the CDR-SB APR. As shown

in Table 2, correlations increased with each added predictor. The most

pronounced improvement occurred with addition of the PHS to age,

and again with addition of the IHS, whereas adding memory into the

model marginally improved prediction. The strongest correlation with

disease progression was observed for the full MHS (r = 0.55 [0.50,

0.61]).

Given these findings that theMHS predicts time to conversion from

MCI to dementia and correlates with clinical measures of AD progres-

sion, we next sought to evaluate the utility of the MHS for clinical trial

enrichment. Table 2 illustrates the difference in required sample size

after screening with each multivariate predictive model compared to

no screening, using change in the CDR-SB as the hypothetical trial out-

TABLE 2 Pearson correlation coefficients (95%CI) between
scores from each predictivemodel and CDR-SB APR of change, and
relative sample sizes needed for a hypothetical clinical trial after
enrichment using the highest 50% risk frommultivariate predictive
models, with CDR-SB APR as the trial outcome.

Model

Correlationwith

CDR-SBAPR

(95%CI)

Relative sample

size

(95%CI)

Age 0.20 (0.12, 0.26) 0.71 (0.50, 0.72)

Age+ PHS 0.35 (0.29, 0.41) 0.52 (0.42, 0.59)

Age+ PHS+ IHS 0.53 (0.48, 0.59) 0.36 (0.29, 0.38)

MHS:

Age+PHS+ IHS+RAVLT

0.55 (0.50, 0.61) 0.33 (0.29, 0.38)

Abbreviations: APR, annual percent rate; CDR-SB, Clinical Dementia

Rating–Sum of Boxes; CI, confidence interval; IHS, imaging hazard score;

MHS, multimodal hazard score; PHS, polygenic hazard score; RAVLT, Rey

Auditory Verbal Learning Test.

come. Limiting trial enrollment toparticipantswith the top50%ofMHS

risk scores is expected to reduce the sample size necessary to detect

significant clinical decline by 67%.

3.4 Predicting AD pathology with the PHS

Finally, to assess the use of the Desikan AD PHS at predicting age of

onset of AD pathology, survival curves for Aβ42 positivity and p-tau
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6 REAS ET AL.

positivity by age according to mean PHS risk are presented in Figure

S3 in supporting information. As expected, age strongly predicted the

onset of pathology, with the probability of abnormal amyloid or p-tau

increasing from zero at age 55 to > 90% by age 90 among those with

a median PHS. PHS strongly modified survival curves, such that for a

given probability, PHS shifted the age of onset for abnormal pathology

by several years. For instance, an individual in the 1st PHS percentile

has a 50% probability of amyloid positivity at age 82, whereas an indi-

vidual in the 99th PHS percentile is predicted to reach 50% probability

8 years prior, at age 74. Similarly, age for 50% probability of p-tau pos-

itivity for individuals in the 1st and 99th PHS percentiles is predicted

at ages 83 and 75, respectively, again highlighting an 8-year shift in risk

for p-tau abnormality related to PHS.

4 DISCUSSION

In this study, we demonstrate the utility of the Desikan AD PHS, both

independently and integrated with complementary imaging and cogni-

tive data, at predicting time to conversion from MCI to AD dementia

and for enrichment of AD clinical trials. First, we leverage amultimodal

approach to show that predicted time to conversion from MCI to AD

can be optimized by integrating the PHSwith an individual’s brain atro-

phy signature and memory performance. Next, we demonstrate that

this MHS predicts rates of disease progression and can thus be imple-

mented to enrich clinical trials for participants who are most likely to

exhibit clinical decline and demonstrate treatment effects. Thus, the

MHS represents a conceptual advance in precisionmedicine over prior

multimodal models by predicting age of disease onset, presenting a

novel approach that could be extended to other disorders beyond AD.

Given the heterogeneity of MCI and the prognostic uncertainty of

the diagnosis, tools for precision modeling of clinical trajectories from

the MCI stage are needed. Because of the complexity of disease pre-

sentation in prodromal stages, multimodal tools that integrate comple-

mentary AD biomarkers demonstrate superior performance to single-

modality methods. Here, we present the MHS as an optimized predic-

tive model that leverages economical and non-invasive biomarkers of

genetics, neurodegeneration, and episodic memory impairment. This

multifactorial tool provides a clinically meaningful separation of AD

conversion risk, with a > 5-year distance in predicted conversion time

between those in the 20th versus 80thMHS percentiles. Prior integra-

tive models that combine measures of pathology, neurodegeneration,

cognition, or genetics, have also shown promise for cross-sectional dis-

crimination of AD16,30 or prediction of cognitive decline or disease

progression.17,31,32 Whereas thesemultimodal tools relied upon either

costly (e.g., PET) or invasive (e.g., CSF) biomarkers, measures used

in computation of the MHS would require relatively convenient and

cost-effective tests that are readily accessible in clinical settings. Fur-

thermore, in contrast to prior models of AD classification30 or disease

conversion32 that included APOE genotype, the MHS captures a more

comprehensive genetic risk profile with the PHS.

Recent advances in the development of disease-modifying thera-

pies for AD indicate that novel pharmaceutical agents may soon be

readily available in clinical settings.33 Nevertheless, several critical

issues remain to be addressed to maximize clinical utility, including

heterogeneity of treatment efficacy according to genetics, sex, and

ethnicity;, potential for serious adverse events; and establishing

long-term slowing of disease progression. Thus, the race for an effec-

tive treatment continues, with unprecedented failure rates of past

trials partially attributed to imprecise selection of trial candidates.34

Due to the high financial cost, participant burden, and risk of side

effects of clinical trials, there has been an urgent call for strategies to

reduce required sample sizes by enrichment with precision selection

tools, particularly with multivariate measures that optimize power

estimates.35 Whereas PET-based amyloid positivity is commonly

used for pre-screening, alternative cost-effective methods that do

not require radiation exposure will help to streamline enrollment

pipelines. Here, we present the MHS as a candidate trial enrichment

approach that, by integrating genetic, MRI, and cognitive data, obvi-

ates the need for invasive lumbar puncture for measurement of CSF

biomarkers, or prohibitive cost and radiation exposure fromPET scans.

Our results suggest that incorporating the MHS for trial screening

could lower required sample sizes to a third of those needed without

pre-screening. Even a simpler model combining the Desikan AD

PHS with age, requiring only a blood or saliva sample, would reduce

target sample sizes by nearly half. The MHS provides a framework

for minimizing clinical trial cost and participant exposure to drug side

effects through multimodal enrichment strategies, warranting further

investigation to both replicate our findings and optimize pre-screening

predictive models. Finally, our results provide novel evidence that the

Desikan AD PHS, a key component of the MHS, is a sensitive measure

of accumulating AD pathology. Although cross-sectional studies have

reported that PRS are associated with CSF tau but are only weakly

associated with amyloid,36,37 we previously observed strong associ-

ations of the Desikan AD PHS with both amyloid and tau.9 Here, we

extend these findings to demonstrate that the PHS can predict the age

at which clinically significant amyloid and p-tau appear, with onset of

pathology at increasingly younger ages for those with higher PHS. This

pronounced separation of pathology risk by PHS stratification high-

lights its correspondencewith the defining pathological features ofAD,

further supporting its potential value for enriching clinical trials with

individuals carrying a specified burden of the neuropathological target,

or in clinical settings to identify patients who are ideal candidates for

disease-modifying therapies. While an effective clinical screening tool

should atminimumbe sensitive to the underlying pathological target of

interest, pathological burden does not perfectly correspond to disease

course, as has been highlighted by the disappointing effects on clinical

progression by otherwise effective disease-modifying agents. Further-

more, the extended preclinical period of AD during which pathology

may present below abnormality thresholds argues for alternative

predictive tools that are independent of current pathological burden.

The MHS could fulfill this need by providing a biomarker-agnostic

indicator of likely time to disease onset that is sensitive to core AD

pathologies but can be implemented during an earlier window of

opportunity during which material pathological burden has yet to

manifest.
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This study has some limitations. AD research has suffered from lim-

ited representation of minority groups, some of whom are at elevated

risk for dementia, which is particularly problematic for genome-wide

association studies requiring exceptionally large datasets. The PHS

and MHS are not immune to this deficiency and may not general-

ize to non-White populations, as they were developed using a sample

of predominantly White participants of European ancestry. Thus, the

multimodal predictive framework reported here should serve as a

foundation for developing population-specific ADmodels as data from

underrepresented groups become increasingly available. Despite their

elevated risk for AD, women were also underrepresented in this

sample. Furthermore, the data presented here reflect models that

require validation in an independent sample.While polygenic tools are

expected to provide substantial benefit in terms of cost and patient

burden by reducing need for PET scanning and lumbar puncture,

evaluation of these models in clinical trial settings will be critical to

validate potential savings. This proof-of-concept study illustrates the

potential of the MHS but warrants further investigation to establish

clinical relevance, which we are pursuing in studies of real-world clin-

ical samples to guide implementation in clinical practice. Finally, the

inclusion of AD biomarkers that are currently under development,

such as plasma p-tau or other blood-based measures,38 may improve

prognostic accuracy of the MHS as these measures become clinically

available.

5 CONCLUSION

In conclusion, the PHS and the MHS are promising predictive tools

for identifying individuals with a high probability of transitioning from

MCI to AD dementia and of demonstrating significant clinical decline.

In memory clinic settings, these tools may improve precision medicine

approaches to personalized risk assessment of AD and to identify

candidates for therapeutic interventions. They may further minimize

clinical trial expense and subject burden by providing cost-effective

screening tools for targeted selection of patients at precise stages

along the AD continuum.

ACKNOWLEDGMENTS

Emilie T. Reas was supported by the National Institute on Aging

(R00 AG057797, R01 AG077202) and American Federation for Aging

Research/McKnight Foundation (311122-00001). Ole A. Andreassen

was supported by Research Council of Norway (# 324499, 324252,

273291, 223273), Norwegian Health Association (# 22731), and the

European Union’s Horizon 2020 Research and Innovation Action

Grant (#847776 CoMorMent). Data collection and sharing for this

project were funded by the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI; National Institutes of Health Grant U01 AG024904) and

DOD ADNI (Department of Defense award number W81XWH-12-2-

0012). ADNI is funded by the National Institute on Aging, the National

Institute of Biomedical Imaging and Bioengineering, and through

generous contributions from the following: AbbVie; Alzheimer’s Asso-

ciation; Alzheimer’s Drug Discovery Foundation; Araclon Biotech;

BioClinica, Inc.; Biogen; Bristol-Myers Squibb Company; CereSpir, Inc.;

Cogstate; Eisai Inc.; Elan Pharmaceuticals, Inc.; Eli Lilly and Com-

pany; EuroImmun; F. Hoffmann-La Roche Ltd and its affiliated com-

pany Genentech, Inc.; Fujirebio; GE Healthcare; IXICO Ltd.; Janssen

Alzheimer Immunotherapy Research & Development, LLC; Johnson

& Johnson Pharmaceutical Research & Development LLC; Lumosity;

Lundbeck; Merck & Co., Inc.; Meso Scale Diagnostics, LLC; NeuroRx

Research; Neurotrack Technologies; Novartis Pharmaceuticals Corpo-

ration; Pfizer Inc.; Piramal Imaging; Servier; Takeda Pharmaceutical

Company; and Transition Therapeutics. The Canadian Institutes of

Health Research is providing funds to support ADNI clinical sites in

Canada. Private sector contributions are facilitated by the Founda-

tion for the National Institutes of Health (www.fnih.org). The grantee

organization is the Northern California Institute for Research and

Education, and the study is coordinated by the Alzheimer’s Therapeu-

tic Research Institute at the University of Southern California. ADNI

data are disseminated by the Laboratory for Neuro Imaging at the

University of Southern California.

CONFLICT OF INTEREST STATEMENT

Anders M. Dale reports that he was a founder of and holds equity in

CorTechs Labs, Inc., and serves on its Scientific Advisory Board. He is

a member of the Scientific Advisory Board of Human Longevity, Inc.

He receives funding through research grants from GE Healthcare to

UCSD. The terms of these arrangements have been reviewed by and

approved by UCSD in accordance with its conflict of interest poli-

cies. Dr. Dale also reports that he has memberships with the following

research consortia: Alzheimers Disease Genetics Consortium (ADGC),

Enhancing Neuro Imaging Genetics ThroughMeta Analysis (ENIGMA),

Prostate Cancer Association Group to Investigate Cancer Associated

Alterations in the Genome (PRACTICAL), and Psychiatric Genomics

Consortium (PGC). Ole A. Andreassen is a consultant to Cortechs.ai

and has received speaker’s honoraria from Sunovion, Janssen, and

Lundbeck. He is also a local PI of clinical trials in mental disorders

(not dementia) sponsored by Boehringer Ingelheim, Janssen, Com-

pass, MAPS. All other authors have no conflicts of interest. Author

disclosures are available in the Supporting Information.

CONSENT STATEMENT

All ADNI sites acquired local institutional review board approval and

informed subject consent for participation in the ADNI study.

ORCID

Emilie T. Reas https://orcid.org/0000-0002-4110-5154

REFERENCES

1. Jack CR Jr, HoltzmanDM. Biomarkermodeling of Alzheimer’s disease.

Neuron. 2013;80:1347-1358.
2. Gauthier S, Reisberg B, Zaudig M, et al. Mild cognitive impairment.

Lancet. 2006;367:1262-1270.
3. Sperling RA, Jack CR, Aisen PS. Testing the right target and right drug

at the right stage. Sci Transl Med. 2011;3:111cm33-cm33.

4. Roses AD. Apolipoprotein E alleles as risk factors in Alzheimer’s

disease. Annu RevMed. 1996;47:387-400.

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13112, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

http://www.fnih.org
https://orcid.org/0000-0002-4110-5154
https://orcid.org/0000-0002-4110-5154


8 REAS ET AL.

5. Wightman DP, Jansen IE, Savage JE, et al. A genome-wide associ-

ation study with 1,126,563 individuals identifies new risk loci for

Alzheimer’s disease.Nat Genet. 2021;53:1276-1282.
6. Harrison JR, Mistry S, Muskett N, Escott-Price V. From polygenic

scores to precision medicine in Alzheimer’s disease: a systematic

review. J Alzheimers Dis. 2020;74:1271-1283.
7. Desikan RS, Fan CC, Wang Y, et al. Genetic assessment of age-

associated Alzheimer disease risk: development and validation of a

polygenic hazard score. PLoSMed. 2017;14:e1002258.
8. Motazedi E, Cheng W, Thomassen JQ, et al. Using polygenic haz-

ard scores to predict age at onset of Alzheimer’s disease in nordic

populations. J Alzheimers Dis. 2022:1-12.
9. Tan CH, Bonham LW, Fan CC, et al. Polygenic hazard score, amyloid

deposition and Alzheimer’s neurodegeneration. Brain. 2019;142:460-
470.

10. Kauppi K, FanCC,McEvoy LK, et al. Combining polygenic hazard score

with volumetric MRI and cognitive measures improves prediction of

progression from mild cognitive impairment to Alzheimer’s disease.

Front Neurosci. 2018;12:260.
11. Tan CH, Fan CC,Mormino EC, et al. Polygenic hazard score: an enrich-

ment marker for Alzheimer’s associated amyloid and tau deposition.

Acta Neuropathol. 2018;135:85-93.
12. Banks SJ, Qiu Y, Fan CC, et al. Enriching the design of Alzheimer’s dis-

ease clinical trials: application of the polygenic hazard score and com-

posite outcomemeasures. Alzheimers Dement (N Y). 2020;6:e12071.
13. Sweeney MD, Montagne A, Sagare AP, et al. Vascular dysfunction-

The disregarded partner of Alzheimer’s disease. Alzheimers Dement.
2019;15:158-167.

14. Frost GR, Jonas LA, YM LI. Friend, foe or both? Immune activity

in Alzheimer’s disease. Frontiers in aging neuroscience. Front Aging
Neurosci. 2019;11:337.

15. Clarke JR, Ribeiro FC, Frozza RL, De Felice FG, Lourenco MV.

Metabolic dysfunction inAlzheimer’s disease: frombasic neurobiology

to clinical approaches. J Alzheimers Dis. 2018;64:S405-S26.
16. Zhang D, Wang Y, Zhou L, Yuan H, Shen D. Multimodal classifica-

tionofAlzheimer’s disease andmild cognitive impairment.NeuroImage.
2011;55:856-867.

17. LeeG, NhoK, KangB, et al. Predicting Alzheimer’s disease progression

usingmulti-modal deep learning approach. Sci Rep. 2019;9:1952.
18. Whitwell JL, Shiung MM, Przybelski SA, et al. MRI patterns of atro-

phy associated with progression to AD in amnestic mild cognitive

impairment.Neurology. 2008;70:512-520.
19. KillianyRJ,Gomez-Isla T,MossM, et al. Use of structuralmagnetic res-

onance imaging to predictwhowill getAlzheimer’s disease.AnnNeurol.
2000;47:430-439.

20. Belleville S, Fouquet C, Hudon C, Zomahoun HTV, Croteau J. Neu-

ropsychologicalmeasures that predict progression frommild cognitive

impairment to Alzheimer’s type dementia in older adults: a systematic

review andmeta-analysis.Neuropsychol Rev. 2017;27:328-353.
21. McEvoy LK, Fennema-Notestine C, Roddey JC, et al. Alzheimer dis-

ease: quantitative structural neuroimaging for detection and predic-

tion of clinical and structural changes in mild cognitive impairment.

Radiology. 2009;251:195-205.
22. JackCR Jr., BernsteinMA, FoxNC, et al. TheAlzheimer’s DiseaseNeu-

roimaging Initiative (ADNI): MRImethods. JMRI. 2008;27:685-691.
23. Dale AM. Optimal experimental design for event-related fMRI. Hum

BrainMapp. 1999;8:109-114.
24. Hagler Jr DJ, Hatton S, Cornejo MD, Makowski C, et al. Image pro-

cessing and analysis methods for the Adolescent Brain Cognitive

Development Study.NeuroImage. 2019;202:116091.
25. Schmidt M. Rey Auditory Verbal Learning Test: A Handbook: Western

Psychological Services. 1996.

26. Bittner T, Zetterberg H, Teunissen CE, et al. Technical performance of

a novel, fully automated electrochemiluminescence immunoassay for

the quantitation of beta-amyloid (1-42) in human cerebrospinal fluid.

Alzheimers Dement. 2016;12:517-526.
27. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease

in the United States and the public health impact of delaying disease

onset. Am J Public Health. 1998;88:1337-1342.
28. Brookmeyer R, Gray S, Kawas C. Projections of Alzheimer’s disease

in the United States and the public health impact of delaying disease

onset. Am J Public Health. 1998;88:1337-1342.
29. Fitzmaurice G, Laird N, Ware J. Applied Longitudinal Analysis. John

Wiley & Sons. Inc; 2004.

30. Tong T, Gray K, Gao Q, Chen L, Rueckert D. Multi-modal classification

of Alzheimer’s disease using nonlinear graph fusion. Pattern Recogn.
2017;63:171-181.

31. Ritter K, Schumacher J, Weygandt M, Buchert R, Allefeld C, Haynes J-

D. Multimodal prediction of conversion to Alzheimer’s disease based

on incomplete biomarkers∗This work was supported by the Bernstein

Computational Program of the German Federal Ministry of Education

and Research (01GQ1001C, 01GQ0851, GRK 1589/1), the European

Regional Development Fund of the European Union (10153458 and

10153460), and Philips Research.∗. Alzheimers Dement. 2015;1:206-
215.

32. Lin W, Gao Q, Yuan J, Chen Z, Feng C, Chen W, et al. Predicting

Alzheimer’s disease conversion from mild cognitive impairment using

an extreme learning machine-based grading method with multimodal

data. Front Aging Neurosci. 2020:12.
33. van Dyck CH, Swanson CJ, Aisen P, et al. Lecanemab in early

Alzheimer’s disease.N Engl J Med. 2022;388:9-21.
34. Kim CK, Lee YR, Ong L, GoldM, Kalali A, Sarkar J. Alzheimer’s disease:

key insights from two decades of clinical trial failures. J Alzheimers Dis.
2022;87:83-100.

35. Veitch DP, Weiner MW, Aisen PS, et al. Understanding disease pro-

gression and improving Alzheimer’s disease clinical trials: recent

highlights from the Alzheimer’s Disease Neuroimaging Initiative.

Alzheimers Dement. 2019;15:106-152.
36. Altmann A, Scelsi MA, Shoai M, et al. A comprehensive analysis

of methods for assessing polygenic burden on Alzheimer’s disease

pathology and risk beyond APOE. Brain Commun. 2019;2.
37. Ge T, Sabuncu MR, Smoller JW, Sperling RA, Mormino EC, FtAsDN

Initiative. Dissociable influences of APOE ε4 and polygenic risk of AD

dementia on amyloid and cognition.Neurology. 2018;90:e1605-e1205.
38. Hansson O, Edelmayer RM, Boxer AL, et al. The Alzheimer’s Asso-

ciation appropriate use recommendations for blood biomarkers in

Alzheimer’s disease. Alzheimers Dement. 2022;18(12):2669-2686.

SUPPORTING INFORMATION

Additional supporting information can be found online in the Support-

ing Information section at the end of this article.

How to cite this article: Reas ET, Shadrin A, Frei O, et al.

Improvedmultimodal prediction of progression fromMCI to

Alzheimer’s disease combining genetics with quantitative brain

MRI and cognitive measures. Alzheimer’s Dement. 2023;1-8.

https://doi.org/10.1002/alz.13112

 15525279, 0, D
ow

nloaded from
 https://alz-journals.onlinelibrary.w

iley.com
/doi/10.1002/alz.13112, W

iley O
nline L

ibrary on [03/11/2023]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://doi.org/10.1002/alz.13112

	Improved multimodal prediction of progression from MCI to Alzheimer’s disease combining genetics with quantitative brain MRI and cognitive measures
	Abstract
	1 | BACKGROUND
	2 | METHODS
	2.1 | Participants
	2.2 | Genotyping
	2.3 | Magnetic resonance imaging
	2.4 | Cognitive assessment
	2.5 | Measurement of Ab and tau
	2.6 | Statistical approach
	2.6.1 | Development of the MHS
	2.6.2 | Predicting conversion from MCI to AD using the MHS
	2.6.3 | Optimizing clinical trial enrichment with the MHS
	2.6.4 | Prediction of AD pathology


	3 | RESULTS
	3.1 | Participant characteristics
	3.2 | MHS predicts conversion from MCI to AD
	3.3 | Clinical trial enrichment with the MHS
	3.4 | Predicting AD pathology with the PHS

	4 | DISCUSSION
	5 | CONCLUSION
	ACKNOWLEDGMENTS
	CONFLICT OF INTEREST STATEMENT
	CONSENT STATEMENT
	ORCID
	REFERENCES
	SUPPORTING INFORMATION


